Thursday, March 7, 2019

Fundamentals of Logistic Regression Journal Paper. Please print for review. (KW mark ups)

https://drive.google.com/file/d/0B0G6ga3ykYRHSWdYcTcwZ2VKcGc/view?usp=sharing

Key for Handwritten Worksheet. Using Logistic Regression to Compare Groups and Estimate ORs.

https://drive.google.com/file/d/0B0G6ga3ykYRHZ1l1NHpkQ2NyYzQ/view?usp=sharing

Handwritten Worksheet. Using Logistic Regression to Compare Groups and Estimate ORs.

https://drive.google.com/file/d/0B0G6ga3ykYRHM2xUNUtoSlkyM28/view?usp=sharing

Key for Worksheet for First Two Lectures on Logistic Regression. The Probability of Being Admitted with GRE and Other Predictors.


https://drive.google.com/file/d/1VQsWQzrrKjKWeBQNJRwnLHu50qE27ktR/view?usp=sharing

Worksheet for First Two Lectures on Logistic Regression. The Probability of Being Admitted with GRE and Other Predictors.

https://drive.google.com/file/d/1rDl4vHpvvjsDlnXjEFLZ_7uZ5TovbAzL/view?usp=sharing

Short Notes on Calculating OR in Logistic Regression for a 'c' Unit Change in a Predictor Variable


https://drive.google.com/file/d/0B0G6ga3ykYRHcGpSS1Q5aWxwZWc/view?usp=sharing

Plot of logit versus probability


https://images.search.yahoo.com/images/view;_ylt=AwrEzODWQ4FcAx8Atx2JzbkF;_ylu=X3oDMTIyMTluMTdrBHNlYwNzcgRzbGsDaW1nBG9pZANhNTBjNDhiNjFiNDg3MjNiN2YxZGY2MzJjN2ZjMWIxOARncG9zAzIEaXQDYmluZw--?back=https%3A%2F%2Fimages.search.yahoo.com%2Fsearch%2Fimages%3Fp%3Dgraph%2Bof%2Bprobability%2Bversus%2Blogit%26fr%3Dmcafee%26tab%3Dorganic%26ri%3D2&w=300&h=300&imgurl=upload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2F3%2F39%2FLogit-probit.svg%2F300px-Logit-probit.svg.png&rurl=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLogit&size=12.4KB&name=%3Cb%3ELogit%3C%2Fb%3E+-+Wikipedia&p=graph+of+probability+versus+logit&oid=a50c48b61b48723b7f1df632c7fc1b18&fr2=&fr=mcafee&tt=%3Cb%3ELogit%3C%2Fb%3E+-+Wikipedia&b=0&ni=54&no=2&ts=&tab=organic&sigr=113ihim2u&sigb=13cu3diov&sigi=12t0hd2el&sigt=10o8jtnea&sign=10o8jtnea&.crumb=arGcbt9Sw3L&fr=mcafee

Relation of Prob, Odds, and Logit




> p=c(0,.05,.25,.5,.75,.95,1)

> odds=p/(1-p)

> logit=log(p/(1-p))

> cbind(p,odds,logit)

        p        odds     logit

[1,] 0.00  0.00000000      -Inf

[2,] 0.05  0.05263158 -2.944439

[3,] 0.25  0.33333333 -1.098612

[4,] 0.50  1.00000000  0.000000

[5,] 0.75  3.00000000  1.098612

[6,] 0.95 19.00000000  2.944439

[7,] 1.00         Inf       Inf