Wednesday, April 24, 2019

B1 Book Example of 2x2 Factorial Arrangement of Treatments Without Interaction. Main Effect Contrasts.

https://drive.google.com/file/d/1uYZonmtuFrv94HN7xo6KSj8zIy3GQCHd/view?usp=sharing

B1 Book Example of 2x3 Factorial Arrangement of Treatments With Interaction. Simple Effect Contrasts.


https://drive.google.com/file/d/1Zf6GBiVgeHvVU_3w9YnAF-p72mawek8g/view?usp=sharing

B1 Book Problems 11.10 11.11 11.12 11.13 for Reference

https://drive.google.com/file/d/1DqmIUTpJ-tFr319zdfYFYc2j_Nn6GfYx/view?usp=sharing

Problem 11.10 from B1 Book with Bonferroni Familywise Confidence Intervals

https://drive.google.com/file/d/1qELktVEw4VcxXMrnFw7a-8fziEjra_AH/view?usp=sharing

Example of Bonferroni Method for Familywise CI's on One Way Anova Textbook Example

https://drive.google.com/file/d/1UXmkL2wWSRAM62rWKTUiF8BZxd7jgDHQ/view?usp=sharing

A Helpful Table for Bonferroni T Multipliers to Construct 'g' 95% Familywise CI's

https://drive.google.com/file/d/0B0G6ga3ykYRHLUdOeFktdE9Jd1U/view?usp=sharing

Textbook Reference for Tukey and Bonferroni Confidence Intervals

https://drive.google.com/file/d/0B0G6ga3ykYRHNExwVmZWbXpuM3M/view?usp=sharing

Thursday, April 18, 2019

Homework Review Problems in B1 Book 11.12 a,b,c, 11.13 b, d, and 11.14 a,b

Problem 12.12 Drinking Experiment Data and Power

https://drive.google.com/file/d/13q52SL1zAGc5kDFbKjD5vwTKVfGrJoPb/view?usp=sharing

Problem 12.11 and 12.11 from B2 Book

https://drive.google.com/file/d/1eKtrS_BzwtN5fahPHpt_5MJnagsbLWoZ/view?usp=sharing

Power Point on Power and Sample Size

https://drive.google.com/file/d/0B0G6ga3ykYRHbWg1eS03MkpHNkE/view

Our AOV Calculation Exercise in R with Tukey Comparisons Compared with Bonferroni Method

https://drive.google.com/file/d/19bLbPWgyXi3CfIFDDbcn0aKiI8j20axZ/view?usp=sharing

AOV Calculation Worksheet Answers

https://drive.google.com/file/d/1Y6lu_uKv6r8wJyxOMHdvQsHe3JEKUTmV/view

AOV Calculation Worksheet

https://drive.google.com/file/d/1VEdOEkmdnCxg-L3oImgrxaAXJ9Xeu9IG/view

More on the Life of R. A. Fisher

https://youtu.be/Zc6o6A3Dm0o

Science in Seconds R. A. Fisher

https://youtu.be/9JKY74fPNVM

The Morrill and Hatch Acts


https://drive.google.com/file/d/1oDe2Td3Iw9SJqk762Ik9UVrbCzjSB6Ig/view?usp=sharing

Thursday, March 7, 2019

Fundamentals of Logistic Regression Journal Paper. Please print for review. (KW mark ups)

https://drive.google.com/file/d/0B0G6ga3ykYRHSWdYcTcwZ2VKcGc/view?usp=sharing

Key for Handwritten Worksheet. Using Logistic Regression to Compare Groups and Estimate ORs.

https://drive.google.com/file/d/0B0G6ga3ykYRHZ1l1NHpkQ2NyYzQ/view?usp=sharing

Handwritten Worksheet. Using Logistic Regression to Compare Groups and Estimate ORs.

https://drive.google.com/file/d/0B0G6ga3ykYRHM2xUNUtoSlkyM28/view?usp=sharing

Key for Worksheet for First Two Lectures on Logistic Regression. The Probability of Being Admitted with GRE and Other Predictors.


https://drive.google.com/file/d/1VQsWQzrrKjKWeBQNJRwnLHu50qE27ktR/view?usp=sharing

Worksheet for First Two Lectures on Logistic Regression. The Probability of Being Admitted with GRE and Other Predictors.

https://drive.google.com/file/d/1rDl4vHpvvjsDlnXjEFLZ_7uZ5TovbAzL/view?usp=sharing

Short Notes on Calculating OR in Logistic Regression for a 'c' Unit Change in a Predictor Variable


https://drive.google.com/file/d/0B0G6ga3ykYRHcGpSS1Q5aWxwZWc/view?usp=sharing

Plot of logit versus probability


https://images.search.yahoo.com/images/view;_ylt=AwrEzODWQ4FcAx8Atx2JzbkF;_ylu=X3oDMTIyMTluMTdrBHNlYwNzcgRzbGsDaW1nBG9pZANhNTBjNDhiNjFiNDg3MjNiN2YxZGY2MzJjN2ZjMWIxOARncG9zAzIEaXQDYmluZw--?back=https%3A%2F%2Fimages.search.yahoo.com%2Fsearch%2Fimages%3Fp%3Dgraph%2Bof%2Bprobability%2Bversus%2Blogit%26fr%3Dmcafee%26tab%3Dorganic%26ri%3D2&w=300&h=300&imgurl=upload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2F3%2F39%2FLogit-probit.svg%2F300px-Logit-probit.svg.png&rurl=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLogit&size=12.4KB&name=%3Cb%3ELogit%3C%2Fb%3E+-+Wikipedia&p=graph+of+probability+versus+logit&oid=a50c48b61b48723b7f1df632c7fc1b18&fr2=&fr=mcafee&tt=%3Cb%3ELogit%3C%2Fb%3E+-+Wikipedia&b=0&ni=54&no=2&ts=&tab=organic&sigr=113ihim2u&sigb=13cu3diov&sigi=12t0hd2el&sigt=10o8jtnea&sign=10o8jtnea&.crumb=arGcbt9Sw3L&fr=mcafee

Relation of Prob, Odds, and Logit




> p=c(0,.05,.25,.5,.75,.95,1)

> odds=p/(1-p)

> logit=log(p/(1-p))

> cbind(p,odds,logit)

        p        odds     logit

[1,] 0.00  0.00000000      -Inf

[2,] 0.05  0.05263158 -2.944439

[3,] 0.25  0.33333333 -1.098612

[4,] 0.50  1.00000000  0.000000

[5,] 0.75  3.00000000  1.098612

[6,] 0.95 19.00000000  2.944439

[7,] 1.00         Inf       Inf

Thursday, February 21, 2019

Worksheet 2 x 2 table. Odds ratio with logistic regression printout.

https://drive.google.com/file/d/0B0G6ga3ykYRHVHhtYVZQNndlU0U/view?usp=sharing

Logistic Regression Example 1 Using R. CHD and AGE


Call:
glm(formula = CHD ~ AGE, family = binomial(logit), data = chd)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.9718  -0.8456  -0.4576   0.8253   2.2859  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -5.30945    1.13365  -4.683 2.82e-06 ***
AGE          0.11092    0.02406   4.610 4.02e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 136.66  on 99  degrees of freedom
Residual deviance: 107.35  on 98  degrees of freedom
AIC: 111.35

A First Glance at Logistic Regression. A Continuous Predictor and Two Level Categorical Example

https://drive.google.com/file/d/0B0G6ga3ykYRHZmczZkJjbDM2eGc/view?usp=sharing

Dr. David Weeks

https://drive.google.com/open?id=14_SL7xDzyHZaD2wyyAZQewCm6cotbMqv

Worksheet (Good Exam Review)

click

Demo of Forward and Backward Stepwise and Best Subsets Model Selection Procedures. Not on Exam.

https://drive.google.com/open?id=1Mx8lO3FO5YFFBMitq497GWrNxe-sINlx

Good Exam Review: Simple Linear Regression Case Study 1. This is the printout for the worksheet. LOS and Age for Senic Data Set.

https://drive.google.com/file/d/118QAWe--3YeHz8xn5p4LsuIVo_UECK4Y/view?usp=sharing

Good Exam 1 Review: Answers to Simple Linear Regression Worksheet LOS and Age

https://drive.google.com/file/d/0B0G6ga3ykYRHbEJXZjc2SDlCVDA/view?usp=sharing

Thursday, February 7, 2019

Homework Problem 13.26 and 13.27 Department Store Data. Example of Interaction Testing Using Partial F Test. A printout using R. A full and reduced model.

https://drive.google.com/file/d/0B0G6ga3ykYRHX3hVSG14dkdqOTg/view?usp=sharing

Answers to B1 book problem: Sales in 3 Departments Problem 13.26 and 13.27


https://drive.google.com/file/d/0B0G6ga3ykYRHZFJHRVdYVDBLZVE/view?usp=sharing

Output for Problem 4.40 in B2 Book

> wafer.lm=lm(FAILTIME~TEMP+I(TEMP^2),data=WAFER)
> summary(wafer.lm)

Call:
lm(formula = FAILTIME ~ TEMP + I(TEMP^2), data = WAFER)

Residuals:
     Min       1Q   Median       3Q      Max 
-1260.49  -475.70   -15.57   528.45  1131.69 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 154242.914  21868.474   7.053 1.03e-06 ***
TEMP         -1908.850    303.664  -6.286 4.92e-06 ***
I(TEMP^2)        5.929      1.048   5.659 1.86e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 688.1 on 19 degrees of freedom
Multiple R-squared:  0.9415, Adjusted R-squared:  0.9354 
F-statistic: 152.9 on 2 and 19 DF,  p-value: 1.937e-12


Using Estimation Equation for Temp= 140 and 150.
Note 140^2 =  19600 
Note 150^2 =  22500

(Failtime | temp = 140) = 154242.914 - 1908.850(140) + 5.929 (19600)
                        = 3211.191

R Command to compute:↔
predict(wafer.lm,data.frame(TEMP=c(140,150)))
       1        2 

3211.191 1316.629 

Quadratic Regression : Output for Problem 4.41 in B2 Book

> plot(Time,SPRate,main="Problem 4.40 in B2 Book")
> rad.lm=lm(SPRate~Time+I(Time^2),data=RADICALS)
> summary(rad.lm)

Call:
lm(formula = SPRate ~ Time + I(Time^2), data = RADICALS)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.14134 -0.06653 -0.02948  0.08310  0.13967 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.00705    0.07899  12.749 2.46e-08 ***
Time        -1.16712    0.12191  -9.574 5.72e-07 ***
I(Time^2)    0.28975    0.03937   7.360 8.73e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1011 on 12 degrees of freedom
Multiple R-squared:  0.9265, Adjusted R-squared:  0.9143 
F-statistic: 75.65 on 2 and 12 DF,  p-value: 1.574e-07



Written Dialogue Associated with Quadratic Regression Exercises from B2 Book. Problems 4.40 and 4.41

https://drive.google.com/open?id=1AeNk3ehzZ0NXcqqXgZcnvl89QVky3IPB

Senic Data Mult Linear Regression. Compare 2 models with all continuous predictors

https://drive.google.com/file/d/0B0G6ga3ykYRHY1REOE5SXzlwMXc/view?usp=sharing

Thursday, January 10, 2019

Hello Biostat 2 Students. Review problems from Chapter 12 in B1 Book.

For Week 1 of the semester I would like for you to review Chapter 12 and see if you can work problems:


12.23(a,c,d,e)
12.25 (b,c,d),
 and 12.59 (b,c,d)  (the printout provides CI and estimate for problem d).

I recommend that you look at the problems first so you can have an idea of the concepts you need to be looking for in the chapter.  The book goes through some arithmetic on calculation of the slope, intercept, and sums of squares for the AOV.  Don't worry so much about these calculation details. We will rely on software to calculate these for us.  I would like for you to review the printouts and the interpretation of the values therein.  We will go over these items on the second week of class.


Class Notes Part 1. Small Simple Linear Regression with SAS , SPSS, R, and Minitab outputs. Other topics for class discussion and exercises from various sources. Would be good to print for taking notes in class.


https://drive.google.com/file/d/1Cnp0jsC27dfNGIzGEThMo6Ol66Kq9M15/view?usp=sharing

BIOS 5212 Draft Spring 2019 Syllabus


https://drive.google.com/file/d/1Gp1kZGnwLOfui2TiwxhuDX-jmbVkfwVK/view?usp=sharing

Worksheet passed out in class meeting 1, Jan 10,2019


https://drive.google.com/file/d/1l4jq_4rJzxmiekxwlHgNUhnxZaMFrs1H/view?usp=sharing

The Senic Data Set Description


https://datamining.bus.utk.edu/Documents/SENIC-Description.pdf

Regression book. The B2 Book.

https://drive.google.com/file/d/1F4viyM7Pzq1XnuE046P7jvjosMa_7jL4/view?usp=sharing

Intro to Stat Book. The B1 Book.

click for printouts

Four short intro to simple linear regression videos

https://www.youtube.com/watch?list=PLkIselvEzpM63ikRfN41DNIhSgzboELOM&v=mPvtZhdPBhQ